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Abstract  

Spherically symmetric relativistic spheres of perfect fluid are defined to be isotropic by 
Walker's (1935) isotropy condition. This condition permits the use of noncomoving 
coordinate systems, which, it is argued, are preferable to comoving systems in certain 
situations. It is assumed that these systems are such that the metric is orthogonal and 
involves three unknown functions. These functions are obtained by solving the equation 
expressing the isotropy condition in a number of cases defined by ancillary mathematical 
assumptions. Formulas are given for the pressure, density, and velocity components of 
the fluid, but the detailed physical analysis of the various cases found is reserved for a 
subsequent paper. 

1. Introduction 

In recent years the problem of  gravitational collapse has stimulated the search 
for new solutions o f  Einstein's equations of  general relativity such as those 
produced by Bonnor and Faulkes (1967), McVittie (1967), Whitrow and 
Thompson (1967), and Cahill and Taub ( t971)  for spherically symmetric 
distributions. It is almost always the case that the results are described in terms 
of  comoving coordinate systems. These systems have, of  course, long been 
employed in the cosmology of  general relativity as well as in such early investi- 
gations as those o f  McVittie (1933), Bondi (1947), and Kustaanheimo and 
Quist (1948). They have the advantage o f  simplifying the mathematical analysis 
to a great extent, and this property no doubt explains their popularity. 
However, the principle of  covariance implies that noncomoving systems may 
equally well be used even if, as will be briefly indicated in Section 2, a comoving 
system can always be established for any particular spherically symmetric 
situation. But it cannot be guaranteed that a solution of  Einstein's equations 
obtained in terms of  elementary functions by the use of  noncomoving coordinates 
will still appear in a simple form when it is transformed to the appropriate 
comoving system. An example o f  a similar property is found in the case o f  the 
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Schwarzschild space-time. The coefficients of  its metric involve the elementary 
functions (1 - 2re~r),  (1 - 2 m / r )  -1,  and r 2 in the usual coordinate system, but 
the coefficients are converted to transcendental functions when Kruskal (1960) 
coordinates are employed. 

Consequently we have thought it worth while to examine the possibility 
of solving Einstein's equations in terms of noncomoving coordinates. The few 
previous investigations of  this kind are discussed in Section 3. We shall be 
concerned in the present paper with the determination of solutions by making 
purely mathematical simplifying assumptions. These do not of  themselves 
guarantee that the structure and properties of  the fluid spheres obtained are 
acceptable from the physical point of  view. The physical interpretations of 
our results will be given in a subsequent paper. 

The configurations to be discussed will be assumed to be spherically 
symmetric so that a general metric of the form 

d o  2 = eZXd77 2 _ e2Ud~2 _ r2dg2 2 

dg22 = dO 2 + sin2Od~2 (1.1) 

may be employed. The functions X, p, r may depend both on the time 
coordinate r/and on the spatial coordinate ~, but are always independent of 
0 and 4. Dimensions have been chosen so that the speed of light and the 
Newtonian constant of  gravitation have the value unity. 

From equation (I .I)  and with the coordinate identifications x 1 - ~, x 2 = 0, 
x3 - 4 ,  and x 4 - r7  the components of the covariant symmetric Einstein 
tensor Gab (a, b = 1,2,3,4) may be found. It is well known that the only non- 
vanishing components for the above system are 

Gn ,  G22 = G33, G44, Gl4 = G41 (1.2) 

The Einstein field equations are 

a J  = - 8 ~ r ~  (1.3) 

where Tb a is the energy-momentum tensor. 
It will be assumed that the distribution of material is a perfect fluid so that 

the energy tensor takes the form 

rb  ~ = (p + p ) u %  - ab~p (t .4) 

where p and p are the density and pressure, respectively, and the velocity four- 
vector u a (a = 1,2,3,4) satisfies 

u % =  1 (1.s) 

Since Ga2, G23, G24, Ga3 all vanish identically, it follows that 

u 2 = O, u 3 = 0 (1.6) 
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so that the mot ion of  the fluid is radial, and the components of  the energy 
tensor that do not vanish identically are 

T,' = Co + p)uIul  - p 

T~= = 7'3 3 = - p  
(1.7) 

T44 = (p  + p ) u 4 u 4  - p 

T41 = _e2(X-U)T14 = @ +p)ulu4  

2. The Isotropy Condition 

From the simultaneous set of  equations (1.7), O, P, u l, and u 4 may be 
eliminated with the result that 

e2X(T14)2 + e2~(T22 _ T11) (7-22 _ T44) = 0 (2.1) 

This equation was first obtained by Walker (1935) and arises purely from the 
assumptions that (i), the material is spherically symmetric and (ii), the material 
is a perfect fluid. Hence equation (2.1) expresses the necessary and sufficient 
condition that the metric (1.1) shall correspond to an isotropic system. It is 
for this reason that (2.1) will henceforth be called the isotropy condition. 

It can easily be shown that this equation remains invariant under coordinate 
transformations of  the type 

2; = 2;(}, ~), 17 = l-I(}, 7 )  (2 .2 )  

where the new radial variable 2; and the time variable 1I are independent of  
0 and q~. 

With Einstein's equations, (2.1) becomes 

e2X(G14)2 + e2U(G22 _ Gt 1) (G22 _ G44) = 0 (2.3) 

and this in turn can be converted into a single nonlinear differential equation 
in terms of X,/J, r and their first and second partial derivatives. One particular 
solution of  (2.3) is given by 

G14 = 0 = G41 , G11 = G22 (2.4) 

and this, by (1.3) and (t .7), leads to 

u I = 0 (2.5) 

Thus in general the coordinate system is comoving. A noncomoving system 
occurs when the isotropy condition is solved with G14 @ 0, G11 4:G22. 

The alternative solution of  (2.3) in which G14 = 0, G; 2 =.G44 is rejected on 
physical grounds because these statements lead to u 4 = 0 and thus (1.5) 
becomes u lu a = 1 or e2U(u 1)2 _- _ 1. This produces imaginary values of  u a. 

The density, pressure, and velocity four-vector are obtainable from (1.7) 
in the form 

p = -T22,  p = TI 1 + T44 - T22 (2.6) 
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(T2 2 - I"11) 
e2"U(u 1) 2 = (2.7) 

(T11 -- T2 2) + (T4 4 -- T2 2) 

(T4 4 - -  T2 2) 
e2h(u4)  2 = (2 ,8)  

(Tll _ ~ 2 )  + (7.44 _/ ,22)  

In comoving coordinates these expressions reduce to p = -T22,/9 = T44, u I = 0, 
and e2~'(u4) 2 = i .  

3. Certain Methods o f  Solving Einstein's Equations 

Before Walker's discovery of equation (2.3), equation (2.4) had often been 
regarded as the isotropy condition as it was thought that the use of comoving 
coordinates was not restrictive. However, as has been shown in Section 2, this 
is only a particular solution of (2.3) and may under certain circumstances 
represent a restriction on the physical system. That this can be so may be 
indicated by analyzing a method of solution of Einstein's equations for the 
unknown functions 3 ,̀ ~, and r occurring in (1.1). The method, which has for 
example been used by Bondi (1947), McVittie (1933), and Kustaanheimo and 
Qvist (1948), involves two basic assumptions. Firstly, some condition is imposed 
on the metric (1.1). For example Bondi assumes that 3. = 1 whilst the remaining 
authors assume that isotropic coordinates exist so that 

do 2 = e2~'d~ 2 - e2U(d~ 2 + ~2d~2) (3.1) 

Conditions of this kind are by themselves not restrictive because the metrics 
employed could be converted into the form (1.1) by a coordinate transformation 
of type (2.2). However, when the second basic assumption, namely, comoving 
coordinates, is also introduced a restriction on the physical situation may occur. 
In the case of (3.1), for example, the equations (2.4) can be shown to yield the 
two equations 

/,' - y  = 0 (3.2) 
and 

/~" + X" + X '2 - ~,a _ 2X'#' - (#' + X')/~ = 0 (3.3) 

where the prime and the dot used here and elsewhere will represent partial 
derivatives with respect to ~ and r~, respectively. These two coupled second- 
order partial differential equations may be solved exactly up to undetermined 
constants of  integration for the two functions 3  ̀and/~. The constants can be 
found by introducing boundary conditions. Consequently isotropic coordinates 
plus a comoving frame of reference are sufficient to determine X and/~ and 
therefore density and pressure also from (2.6). Thus the two assumptions are 
sufficient to determine the physical structure of the configuration. This may 
not be realistic for a given problem as has been pointed out by NoerdlJnger and 
Petrosian (1971). 

In the case of Bondi (i947), when X = 1 and a comoving frame of reference 
are used the two differential equations corresponding to (2.4) would involve 
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/~ and r and their partial derivatives with respect to ~ and 7. Again a restrictive 
physical structure may result. 

In order to remove this type of restriction it is necessary to remove at least 
one of the coordinate restrictions. Hence more general solutions of Einstein's 
equations could be found in theory by considering either, (i) a comoving frame 
of reference with a metric unspecified in form, or (ii) a general frame of 
reference with a metric specified in form, or (iii) both an unspecified frame 
and metric. 

The first alternative results in two differential equations for the three unknown 
functions X,/2, r in (1.1) caused by G14 = 0 and G11 = G22. Whitrow and 
Thompson (1967) have found gravitational potentials corresponding to this 
system but they needed to introduce additional assumptions in order to obtain 
analytic solutions. The third alternative insists on a degree of generality that 
is unnecessary. This is so since in theory a transformation of coordinates can 
be found that either changes the general frame into a comoving one [alternative 
(i)] or changes the general metric into one of specified form, for example 
isotropic coordinates [alternative (ii)]. 

It is the second alternative that we have adopted. In this case the metric can 
be Chosen so as to simplify the isotropy condition (2.3), which will be treated 
in its full form. As with the comoving solutions dealt with by Whitrow and 
Thompson (1967) additional assumptions will be introduced in order to simplify 
the mathematical analysis, and these will be sufficient to determine the 
physical structure of the system. 

The conditions (ii) and (iii) may be converted into (i), in other words, 
comoving coordinates are always possible. Suppose that (1.1) is the expression 
for the metric in terms of a noncomoving system and that 

2; = N(~, ~), II = II(~, 7) (3.4) 

are the radial and time coordinates of a comoving system. Then with the 
identifications 2; - .~ i ,  H ~ 2 4, ~ -~ x 1, 77 ~ x 4, 0 ~ x 2 = 2 2, q~ ~ x 3 = ~ 3  the 
metric (1.1) can be orthogonally transformed into 

e4U~ 2dF I 2 e2(X + U)d2; 2 
do  2 = H,2(~;~2e2 ~ _ #,2 e2U)--(2; ,2  e2~ " _ ~ ,2e2u) -  r2d~2 2 (3.5) 

where the coefficients o fd I I  2, d2  z, and d~'~ 2 must now be expressed as functions 
of 2; and II. The condition expressing orthogonality is 

eZU~I ' I  - e2XX'H ' = 0 (3.6) 

and moreover it must be assumed that 

2;'2e2X - ~_,2e2U > 0 (3.7) 

in (3.5), so as not to violate the condition that 2; is spacelike and II is time- 
like. In the comoving II, 2 system the velocity four-vector is ~e and only ~4 
is nonzero. But ~1 is related to u 4, u 1 of the noncomoving system by 

~1 = 0 = 2;'u 1 + Xu 4 ( 3 . 8 )  
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The two equations (3.6) and (3.8) determine the transformation functions 2; 
and 11 that transform the noncomoving system into its comoving counterpart. 
An alternative to (3.8) is obtained by multiplying it by 87r(p + p)u 1 and using 
(1.7) and (1.3) to give 

2Ga 4 - N'(G2 z - aa 1) = 0 (3.9) 

Previous investigations in which the isotropy condition is treated in its full 
form apparently begin with the solutions obtained by Narlikar and Moghe 
(1935a, b) using an isotropic coordinate system, but they were not analyzed. 
Moghe and Sastry (1936) used noncomoving frames to consider "What happens 
to the Schwarzschitd interior solution when it becomes nonstatic owing to 
some instability." The result of their investigation is a solution that is apparently 
only expressible in terms of a very complicated series. For many years after 
1936 no published literature was identified until the recent work of Vaidya 
(1968). In this case the metric is written down in terms of curvature coordinates 
[r = ~ in (1.1)]. The main characteristic of this class of solution is that the mass 
of the configuration is equal to 47r/3 times the density multiplied by the radius 
cubed. Moreover, it is found that a subclass contains the noncomoving equivalent 
of the comoving Robertson-Walker metrics for a homogeneous universe. 

4. The Isotropy Condition for a Metric o f  Specified Form 

To obtain solutions of the isotropy condition it will be assumed here that 
the spherically symmetric metric takes the form 

da z = e2Xdr? 2 - eZU(d~ 2 +f2df22) (4.1) 

where f i s a  function of ~ alone and X, ~ are functions of both ~ and ft. 
The nonvanishing components of the Einstein tensor for this metric can be 

shown to be 
G11 = - e  -2x {2/2 + 3/22 - 2X~} 

+ e -2~ U '2 + 2X'/~' + (/a' + X') + - ~ + A 

G22 = -e2X{2ii + 3/2 2 - 2~/}  

(4.2) 

, f , )  
+e-2U ~l" +)t" + X'2 + f ( u '  + X') + ~ ]  + a 

G4 4 = _3e-2X/.i2 

{ 2 f " + f ' 2  11 +e -2u 2/~"+g{2 + 4 f ' / f +  - f  f ~ - - f ?  +A 

(4.3) 

(4.4) 
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e2KG14 = - e 2 " a 4 1  = 2{ /h '  - X'/~} 

where 2 = Ox/Or~, x' = Ox/O~, and A is the cosmical constant. 
From (4.2)-(4.5) it is convenient to form the following quantities: 

G22 - GI 1 = e-Z#K1 

where 

G22 - G44 = .2e-2XK4 _ e-2UK2 

e2XG14 = -e2gG4 t = 2K3 
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(4.5) 

(4.6) 

(4.7) 

(4.8) 

K 1 =/2" + X" + ~k '2 -./~,2 _ 2X'/2' 

f ,  , f , ,  f ,2  1 
~(/a +X') "~f2 f 2  +j~2 (4.9) 

+ f " 3  ' K2 = / J " - X "  +/2'2 - •'2 ~ U - X ' )  

f "  f t2 1 
+ - -  + (4.10) 

f f 2  f 2  

g 3 = ~/' - ~k'~, K 4 =/~ - X~ (4.11) 

Thus from (4.6)-(4.8) the isotropy condition (2.4) may be written as 

e 2(u - x){4K32 - 2K1K4) - K1K2 = 0 (4.12) 

In addition from Einstein's equations and (4.6)-(4.8) the density, pressure, 
and nonvanishing components of  the velocity four-vector given by (2.6), (2.10), 
and (2.11) become 

8rrp = G2 2, 8~0 =e-2UK1 - G4 4 

e-2UK12 
e2U(u,)2 = 4e-2XK3 z _ e-2#K12 (4.13) 

4e-2~.K32 

e2X(u4) = = 4e_2XK32 _ e-2UK12 

The noncomoving condition, from (4.6) and (4.8), is satisfied when K1 @ 0 
and K a 4 = 0 for alt values of  ~ and r/. 

5. Method o f  Solution o f  the Isotropy Condition 

Since the isotropy condition (4.12) is a second-order, nonlinear, partial 
differential equation of  two variables ~ and ~ and three unknown functions 
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X,/~, f,  it is necessary to introduce a number of assumptions, so that it may 
be solved uniquely up to constants of integration. As has been stated in Section 
1, this will be achieved by introducing purely mathematical assumptions. In 
presenting solutions of the equation, many different constants of integration 
will arise. The letters n, N, A, B (with or without numerical subscripts) are 
reserved for such constants. Any other constants will be denoted by the letters 
a, b (with or without numerical subscripts) ~0 > 0, % > 0, and k. Whilst a, 
b, ~o, % are arbitrary constants, k has special values given by 1,0, -1 .  On certain 
occasions the same letter may be used in different solutions. It is taken for 
granted that this letter may assume a different significance in each solution. 
Finally, whenever a letter is used as a subscript it will (unless otherwise stated) 
refer to a total derivative with respect to that subscript, thus/3z = d3/dz. 

The first mathematical assumption concerns the nature of the line element 
(4.1). It will be supposed that the functions X and/~ have the form 

X = a + q  ~, /~=/3+~ (5.1) 

where a,/3 are functions of a single variable z which is dependent on both 
and r/. In addition • and ~ are functions ofr~ alone. The metric (4.1) thus 
becomes 

d o  2 = e 2 (a  + " I ' ) d~2  - e 2(~+ '4:)(d~2 +f2dgZ2) (5.2) 

If now (5.1) is substituted into expressions (4.11) then K 3 and K 4 become 

x,a = zz '( /3=z - , ~ : z )  + g z '  - c~z ' (~  (5.3) 

and 

K4 = z 2([3zz - O~z/3z) +/3z(z" - ~ z )  + Of - azZ ~fi - ~ (5.4) 

Inspection of (5.3) and (5.4) shows that they will simplify if } = az is 
imposed. Since ff is a function of r/alone, then by this restriction so too is z. 
Thus z' = 0 and 

z(~, n) = h(~) + g(n) (5.5) 

where h is an arbitrary function of ~ and g is an arbitrary function of r/. 
Therefore ~ = a~ ana upon integration 

~, = ag (5.6) 

since the constant of integration may be incorporated in the arbitrary function 
gO?). Consequently with these conditions and equations (5.3), (5.4), (4.9), 
(4.10) the expressions for K 1 t o  K 4 now become 

f ' h ' ]  f .  f , 2  1 
+ h " - 7 - ) ( O e z + / 3 z ) + - ~ -  f---2+f-5 (5.7) 
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~2 K2 = h (&z - ~=  + &2 _ az2) + h"(& - e=) 
f ' h '  ,~ f , 2  1 

+ 7 (3/3z - az) + + f 2  f 2  

t "  
K 3 = h g([3zz - O~z[Jz - a~z) 
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(5.8) 

and lastly 

secondly, 

h" f'h' _bh, 2 (5.12) 
f 

h" = b lh  '2 + b2 (5.13) 

With these restrictions, and the introduction of  Ks, which is a function of  z, 
through 

Ks = fizz - oqz + 13z 2 - oq 2 - b~z (5.14) 

equations (5.7) and (5.8) become 

K 1  = h ' 2 { ° e z z  + f z z  + °ez 2 - f z  2 - 2c~z~Sz + b(az + fz)} (5.15) 

and 

/'(2 = h'2{K5 + (2bl - b) (2~z - C~z)} + 2{bz(2fl z - Oez) + f " / f }  (5.16) 

Therefore if equations (5.1), (5.6), (5.9), (5.10), and (5.14)-(5.16) are 
substituted into (4.12) it is fotmd that the isotropy condition takes the form 

2h,292e2~ - c~ + ag - w ) ( f z z  _ a z f j  z _ aOez ) (K s _ (2a + b ~ z  ) 

- K1 {2e 2(5- o, + a g -  t~)(~z + a) f f -  g~)  + 2 [b2 (2fz - az) + f " / f ]  

+ h '2 [K s + (2b 1 - b) (2/3z - az)] } = 0 (5.17) 

It is this form of  the isotropy condition that will provide solutions later. 
Since (5.17) is to be solved subject to the noncomoving coordinate condition, 

it follows that K 1 and K 3 must in general be nonvanishing. A helpful relation 
for showing this may be obtained from equations (5.9), (5.14), and (5.15), 
namely, 

2h'Ka - £~K 1 = i h  'z {Ks-{2a + b)az} (5.18) 

~4 =g2@z=-  ~Az - a~=) + (fz +a) ( g -  ~ + )  (5.1o) 

Inspection of  these four relations shows that they will simplify if  the 
following equations hold. Firstly, 

f "  f ' 2  1 
f f 2  +~-~ = 0  (5.11) 

(5.9) 
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Many of  the subsequent solutions satisfy the condition K s - (2a + b)az = 0; 
for these it is only necessary to calculate one of  K1 and K 3 to verify the non- 
comoving character of  a solution. 

In order to solve equations (5.11)-(5.13) simultaneously it is convenient 
to define a function 5Pk(x) given by 

5 p k(x) = sin x, 
= X~ 

= sinh x, 

lf, further, CCk(X ) is defined by 

Y k ( x )  - d~'k(x) 
dx 

and it is easily proved that 

d ~ Y ' k ( x )  _ d ~ k ( x )  _ 

d x  2 dx 

~k~(x) + kSek~(x) = 1 

~k(2x)  = 2~;~?(x) - k 

2 Sx(X)~x(x)  = 9°x(2X) 

k = + l  
k = 0 (5.19) 
k = - I  

k J ~ ( x )  

(5.20) 

(5.21) 

Equation (5.11) has as its first integral 

f ,2  = 1 - kn12f 2 

where nl 4: 0. The three values of  k mean that there are three types o f  solution 
for f, which can be written compactly in the form 

f =  (1/nl) SPk(nx~ + nz) 

When the metric (5.2) is inspected, the requirements of  the geometry of  a 
sphere show that f =  0 at ~ = 0. This means that n 2 = 0 and so 

f =  (l/n1) 5gk(nl~) (5.22) 

The expression for h will now be determined by considering two cases defined 

by b 1 = 0 and b I @ 0. 

Case L When bl = 0 the solution of  (5.13) is 

h = bz~ 2 + NI~ + N2 (5.23) 

Therefore when (5.22) and (5.23) are substituted in (5.12) it follows that 

b2 - nl(b2~ +N1) %(n1~)=b(b :~  +N1) 2 



R E L A T I V I S T I C  F L U I D  S P H E R E S  131 

which must be true for all ~. Thus the only possibility is k = 0, b = 0, N1 = 0. 
Hence the complete solution is 

f =  ~, h = b~2/2 +N2 
(5.24) 

k = 0 ,  b = 0 ,  b l = 0  

Case II. Since now bl ¢ 0, the substitution 

h = - ( t / b l ) l n H  (5.25) 

where H is a function of  ~, reduces (5.13) to 

H "  + blb2H = 0 

This leads to the solution 

where 

and 

H = N 3 5 fk (b3x  ) (5.26) 

x = ~ + N2 (5.27)  

kb32 = bib2, k = 1, - 1  when b 2 4 :0  
(5.28) 

b3 = 1, k = 0 when b2 = 0 

Equations (5.25) and (5.26) together lead to 

h = --(1/bl)tn{N3 5~k(b3x)} (5.29) 

In order to show that (5.29) satisfies (5.12), two subcases will be considered and 
these are defined by k = 0 and k = + 1. 

Subcase II(i). When k = 0, then b 2 = 0, b 3 = t by (5.28) and 

f =  ~, h = - ( 1 / b l ) l n ( N 3 x  ) (5.30) 

Also with the aid of  (5.30), equation (5.12) becomes the identity 

1 b - b l  1 
- ( 5 . 3 1 )  

which is satisfied only when N~ = 0 and b = 2b t 4 = 0. Therefore, the complete 
solution for f and h in this subcase is 

f =  ~, h = -(1/b~)ln(N3~ ) 
(5.32) 

b = 2b  1 4  =0, b 2 =0 ,  k = 0  

Subcase II(ii). This subcase is defined by the first o f  alternatives (5.28) so 
that b2 v L O, kb32 = blb 2, k = +-1. Thus we have 

f = -  x(1~),  h = -  ln{2c~j<~k(b3x)} (5.33) 
n I 
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where x = ~ + N2 and so (5.12) becomes the identity 

~ k ( n l ~ )  = b3 { b g ~ 2 ( b 3 x )  - 1) 

nl 5~k(nl~) bl ~'k(b3x) 5"k(b3x) 

or with the aid of(5 .21)  

~ k ( n l ~ )  = b 3  b ~ k ( 2 b 3 x )  + b - 2ba 

nl ~gOk(nl~) b l  - - 5 ~ ' k ( 2 b 3  x )  

This identity is satisfied by b = 2b 1, N2 = 0, n 1 = 2b3,  and so for this case the 
full solution for f and h is 

f=  1 ~k(nl~), 
n l  

b = 2ba v ~ 0, k n l  2 = 4 b l b  > k = +-1 

(5.34) 

The functions f a n d  h have thus been found and it is then possible to proceed 
to the solutions of  the isotropy condition (5.17). 

6. S o l u t i o n s  A 

In this section all solutions presented are defined by the conditions of  case 
I in Section 5 so that equation (5.24) holds. Thus the metric (5.2) with (5.6) 
and (5.24) becomes 

d a  2 = e 2(~ + g')d~ 2 - e 2(~ + ag)(d~2 + ~ 2d~22) (6.1) 

and the isotropy condition (5. t7)  is now 

2h ,2  g2e2(~ -~e + a g -  q~)([jz z _ CXz[3z _ aeez ) {Ks - 2 a a z }  

_ K  1 (2e2~ - a + ag - qO(13z + a) @" - g ~ )  + 2b2 (213 z - az) + h'2K5 } = 0 
(6.2) 

where/(1, Ks, given by (5.15) and (5.i4),  are 

K1 = h ' 2 { a z z  + ~zz + oq 2 - ~z 2 - 2ez~z} (6.3) 

Ks = ~zz - a z z  + ~z 2 - C~z 2 (6.4) 

'rile expression for z is given by (5.5) with (5.24), and so 

Z = b2~2/2  + N 2 + g( r l )  ( 6 . 5 )  

The foregoing expressions lead to the following subcases. 

Class A{i) .  A class of  solutions may be defined through the assumptions 

a = O, cx = ~, ~zz - ~z 2 ~ 0 (6.6) 

Thu~ frhm (6.3) and (6.4) 

K~ = 2h'2(13zz - ~3J), Ks = 0 (6.7) 
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and so the isotropy condition (6.2) is satisfied by 

e-2~I'(g - g@) + b 2 = 0 

The corresponding line element (6.1) is 

d o  2 = e2~{e2qed~2 _ (d~ 2 + ~2d~'22)} 

If a new time variable ~ is introduced through 

the equation (6.8) becomes 
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(6.8) 

(6.9) 

d2g 
dgl2 + b 2 = 0 

whence, without loss in generality, 

g = -b2~2/2 - 3¢) (6.11) 

Hence from (6.5) with (6.10) and (6.11) the expression for z is 

z = b  2({2 _ ~ 2 ) / 2  

Thus if a new constant is defined by 

e/~o 2 = b2/2 ,  e = +-1 

and the bars are omitted, the metric (6.9) with (6.10) is conformally Minkowskian 
so that 

do 2 = e2C~(dr/2 - d~ z - ~2d~2) (6.12) 

z = e(~ 2 - r72)/~o 2 (6.13) 

and/3 is an undetermined function ofz.  
Solutions of  this kind imply that the coordinate system is noncomoving, 

since by equations (5.18), (5.24), (6.6), and (6.7) 

2~K3 = -g~K1 --" - 8 ~  2 (~zz --/~z2)/~0 2 (6.14) 

and thus K 1 ~a 0, K3 ~ 0. 

Class A(i i] .  This solution follows from the four independent assumptions 

- g ~  = O, 2fiz - az  = 0, K s = 0, a = 0 (6.15) 

which clearly satisfy (6.2). The first equation leads to 

e 'I* = nag (6.16) 

while the second and third with (6.4) yield 

e ~ = B ( z  +A)  1/3 (6.17) 

gl = f eee('~)drl (6. i 0) 
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e ~ = Ba2(z + A )  2/3 (6.18) 

where A, B, B 1 are the constants o f  integration. Thus with equations (6.15)- 
(6.18) the metric (6.1) becomes 

do 2 = (z  + A)4 /3(n3B12dg)  2 - (z + A ) 2 / 3 B 2 ( d ~  2 + ~2d~2) (6.19) 

This expression may be simplified by the introduction of  a new time variable 
and a radial coordinate ~ defined by 

n3Bi2dg  = ed~, B~ = ~ (6.20) 

where e = -+1. Integration of  the first of  these equations with a particular 
choice of  constant of  integration yields 

g = e~/n3B12 - N z - A 

and so with (6.5) and (6.20) the expression for ~ - z + A is now 

b2~ 2 eh 
z =- z + A = 2B--- 5 + n3B12 

Since b2 may be positive or negative, it is possible to define two new constants 
Go, rTo by 

e l _  b2 
~o 2 2B 2, el = -+1, ~o = n3B12 > 0 

Then the bars may be omitted and the metric written as 

do 2 = z4/3d~2 - z2 /3 (d~2  + ~2d~Q.2) (6.21) 

z = ea~Z/~o 2 - e~ /~o  (6.22) 

This solution may be shown to be noncomoving from equations (4.1), (4.11), 
(4.9), (6.21), (6.22) with the result that 

4e1% 40~2 (6.23) 
K 1 = ~ 0 2 -  ~g3 - 9~o4Z2 

and so in general/(i  and K 3 are nonzero. 

7. S o l u t i o n s  B 

The defining equations for these solutions are given by (5.32) with the addi- 
tional assumption that b 1 = - 1 .  Moreover, since it is always possible to redefine 
the radial coordinate ~ by ~ = N3~, it is not restrictive to take N 3 = 1 and so the 
equations (5.32) are now 

f =  ~, h =ln~, k = 0  
(7.1) 

b = - 2 ,  b I = - 1 ,  b2 = 0 
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and the metric (5.2) with (5.6) and (7.1) will now be written 

do 2 = e 21°e + "P@)]d~ 2 - e 2/3 + 2ag({)(d~2 + ~2d~22) (7.2) 

and hence with (7.1) and g = d g / d r l  the isotropy condition (5.17) becomes 

2~2g, 2e 2 (d3-°~+ag-  "I')(~zz --  Otzj3 z -- a a z ) { K  s - 2(a - 1)az} 

-- ( ~ 2 K 1 ) { 2 ~ 2 e 2 ~ - a + a g -  !')(~z + a )  (e~ -- gV~) +Ks ) : 0 (7.3) 

The expressions for K1, Ks given by (5.15) and (5.14) are now 

~2K1 = a z z  + t3zz + Otz 2 - ~z 2 - 2 a g e  - 2(O~z + ~z) (7.4) 

Ks  = f3= - eezz + &2 _ ~=2 + 2/3~ (7 .5)  

while from (5.5) and (7 . t )  the expression for z is 

e z = ~e g('~) (7.6) 

A further condition relating the functions g(~) and 1 '@) will now be 
imposed, namely, 

~, 2 e 2 ( a g -  ,I,) = e2g 

Therefore, 

and 

~2e2g(a - 1) = e2,Iz 
(7.7) 

(~ _ g ~ ) e 2 ( a g  - ',I,) = - - (a  - 1)e 2g 

Hence, upon multiplication by ~2 it is found that 

~2~2e2(ag_ ca) = e2Z 
(7.8) 

~2(~ _ ~ ,~  )e2(ag - ~I, ) = - - (a  - 1)e 2z 

This means that the isotropy condition (7.3) with (7.4) and (7.5) now becomes 

2e2(~- c~ + z)([3zz _ a z S z  - aaz)f f3zz -.O~zz + [Jz2 

- ~z 2 + 213z - 2(a - 1)o~z} - {O~zz + 13zz + e~z 2 - ~z 2 

- 2 a z ~ z  - 2 ( a z  + & ) }  {~zz - eezz + ~z 2 

- az  2 + 2/3~ - 2(a - 1) ([d z + a ) e  2(~ - ~+z)} = 0 (7.9) 

This equation therefore involves only the combination z, of  { and ~. It is in 
fact a generalization of  equation (4) of  Narlikar and Moghe (193 5b). 

The line element (7.2) with (7.7) is now 

d o  2 = e 2 °e+2g(a -  1)(edg)2 - e 2#+ 2ag(d~2 + ~2d~22) (7.10) 

where e = 1, - 1 .  New variables 01, co) are defined by 

eg(~) = r/, co = ln~ (7.11) 
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Hence (7.10) may be written in the form 

do2 = e2(a - 1)e~ (eZ~d,r .12 _ e2(~ + Z)(dco2 + d~22)) (7.12) 

z = ln~e g(~) = ln~ + e~ = co + e~ (7.13) 

The form of  the metric (7.12), which is also employed by Taub (1968), is 
best regarded as a mathematical device, since from the physical point of  view 
the variable co does not present the normal properties o f  a radial coordinate. 
For example, the center o f  the distribution ~ = 0 does not correspond to co = 0 
but rather to co = _o~. Therefore, in any analysis of  solutions of  (7.9) the (~, r/) 
system should be ultimately regarded as the physically significant system. 

Inspection of  the equation (7.9) shows that its left-hand side consists of  the 
product of  two factors when a = 1. Either of  the factors may be equated to 
zero, and both possibilities have been found to produce solutions. However, 
the complete analysis is lengthy and, for the sake o f  brevity, these solutions 
are omitted and will be treated in a later paper. 

A simpler class of  solutions o f  (7.9) arises from the assumption 

/ 3 - c ~ + z  =ao (7.14) 

where ao is a constant. The metric (7.12) becomes 

do2  = e2(~ + z) + 2e(a - 1)n(e-ZaodrlZ _ dco2 _ d ~ 2 )  (7.15) 

while (7.5) is 

Ks = - 1  (7.16) 

The isotropy condition (7.9) is 

2(1 +e2ao(1 - 4 a  + 2a2)}/3zz + 2(e za° - 1)/3z 2 

+ 4(ae za° - 1)(3z + 2a2e za° - 1 = 0 (7.17) 

It is evident that this equation cannot be satisfied i fa  = 1 and also a o = 0. But 
the equation may be readily solved in terms of  elementary functions in the 
three subcases 

0)  ao = 0  
(ii) ao @ 0 and 1 + e2a°(1 - 4a + 2a 2) 4 :0  

(iii) ao 4 :0  and 1 + e2a°(1 - 4a + 2a 2) = 0 

As an illustration, the details for the a o = 0 case are given. 
The solution of  (7.17) is 

2(/3 + z) = Ae-no /Le  (z +no)lL + B ( z  + no) /L  

z + no = co + e~ + no (7.18) 

where A, no are the constants of  integration and B, L, and an additional 
constant (7, depend on a and are defined by 

L = 1 - a, B = ½(1 + 2L2), C = ½(1 - 2L 2) (7.19) 
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Clearly, no can be abolished by a suitable adjustment of  the origin of  r~ time 
and hence can be equated to zero in (7.18). Thus the metric (7.15) is 

d o  ~ = e x p ( A e  z/L + B z / L  - 2Ler l )  (dr/2 - dw  2 - d~22) 
z = c~ + er~ (7.20) 

From equations (7.4), (5.9), (7.1), (7.11), and (7.18) it is found that 

~2K 1 = - (1 /2L  2)  { A e  ~/L - C} 2 (7.21) 

~K3 = - ( e / 4 L  2) ( A e  zlL - C )  ( A e  zlL - B }  

which verify that the solution is noncomoving. 

(7.22) 

8. S o l u t i o n s  C 

The defining equations for this solution are given by (5.34), with the 
additional assumption that bl = - 1 .  Therefore, equations (5.34) with the 
expression for e z are now 

f =  (l/n1) 5Pk(nl~), h = in (N 3 5gk(nl~/2)} 

b = - 2 ,  b1 = - 1 ,  k = +-1, k n l  2 = -4b2  (8.1) 

e z = eh(~) +g(rO = N3 5 ¢ k ( n l U 2 ) e  g(~) 

where 5g k(x) is defined by (5.19). Hence the metric (5.2), with (5.6) and 
(8.1), is 

d o  z = e 2(a + ' IS)d~2 - (1/n12)e 21~ + ag(~)]  (n12d~2 + ,gak2(nl~)df]2) (8.2) 

and the isotropy condition (5.17)becomes 

2h,292e2(~- ~ + a g -  ' . I Q ( ~ z z  _ Otz[ j z  _ a a z ) ( K s  -- 2(a - 1)az} 

_ K1 {2eZ(~ - ~ + ag - * ) ( ~ z  + a)  q - g + )  + h'2Ks 

+ 2[b2(2~z - o~z) - n ick]  } = 0 
(8.3) 

where g = dg/d~l .  The expressions for K s and K 1 from (5.14) and (5.15) are 

K s = (3zz - azz  +/3z 2 - az 2 + 2/3 z (8.4) 

K 1 = h '2 {o~ z + f3zz + az  2 - j3z 2 - 2a~j3z - 2(O~z + ~z)} (8.5) 

A solution of  (8.3) can be obtained with the following additional assump- 
tions: 

- ~'~ = 0, a = 1, Ks = 0, b2(2/3z - az)  - n l Z k  = 0 (8.6) 

From the first of  these we have 

e 'I' = n ~  (8.7) 
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while the last with kn l  2 = - 4 b  2 leads to 

2flz - az + 4 = 0 (8.8) 

so that from (8.4) the assumption Ks = 0 yields 

e 25 = n42e-4z(1 + Ae-2Z) 2/3 (8.9) 

and so 

e 2ce = n52(1 + A e - 2 Z )  4/3 (8.10) 

The constant A may be positive or negative. On substitution of  (8.7), (8.9), 
and (8.10) into (8.2) it is evident that no generality is lost in writing 

g + Inn 4 = er/ /%, e = +1 

% = n3ns, nl = 1, N 3 = n 4 

and so the metric finally becomes 

do  2 = (1 + A e - 2 Z ) 4 / 3 d ~  2 - e 2~/'~° -4z(1 + A e  '2z) [d~ 2 + Sl'k2(~)d~ 2] 

e z = 5pk(~/Z)e~n/~o (8.11) 

If (5.18) is now evaluated and equations (8.1), (8.5), (8.8)-(8.10) are also 
used, then it can be shown that 

g K  a = 2h'K 3 = -10h'2~}(/3z + 2) 2 
_ 10e cc2(~/2) A 2e-4Z (8.12) 

9% 5tk2(~/2) (1 + ae-2Z) 2 

hence verifying that this solution is noncomoving. 

9. Solu t ion  by  Separation o f  Variables 

The method of  solution of the isotropy condition to be presented here is 
unrelated to any of  the methods previously employed. It will now be assumed 
that the metric is 

do  2 = e2(~ + ~,}dr/2 _ e2(~ + ~)(d~2 + f 2 d ~ 2 )  (9.t) 
where a,/3 and f are functions of  ~ alone while ~ ,  ~ are functions of  ~ only. 
With these conditions (4.9)-(4.1 l)  become 

KI=~  "+O~'+c~'2-~'2-20~'~'  f ,  , f,, f , 2  1 ( 9 . 2 )  

,2+f'(3y_ , ) + f " _  f': a (9.3) 
f f f 2  f 2  

K 3 = - a ' ~ ,  K4 = ~ - ~ +  (9.4) 
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where x = d x / d r l ,  y '  = d y / d ~ .  Therefore, the isotropy condit ion (4.12) may be 
written as 

e 2g~ - ~ + ~ - ' ~ ) ( 4 ( ~ ' )  2 - 2 ( } -  t~ ~)K1 ) - K1K2 = 0 (9.5) 

This equation will be solved by  means o f  the assumption that 

/<1 = 2aa '2 (9.6) 

where a is a nonzero constant. Substi tut ion of  (9.6) into (9.5) turns the isotropy 
condition into 

e 2(~ - ~It)(ffy 2 - a ~  + a ~ )  = ( a K 2 / 2 ) e  2(~ - t~) (9.7) 

Since the left-hand side of  (9.7) depends only on the variable r? and the 
right-hand side on ~, the equation is separable as follows: 

~ 2  _ glad + aOY+ = ( k / b 2 ) e  2('I' - ?a) (9.8) 

a K  2 = ( 2 k / b  2)e  2 ( ~ -  ~) (9.9) 

where b is an arbitrary constant, and k = 1 or - t .  
The equation (9.9) is identically satisfied by 

13 = a - ln£ 2k/b 2 = a (9.10) 

and then (9.2) and (9.6) yield 

2a" - 2(a + l ) a  '2 + 2 a ' f ' / f + f  -2 = 0 (9.1 t )  

Hence the condit ion of  isot ropy is satisfied, and the coefficients o f  the metric 
are determined,  by any simultaneous solutions of  equations (9.11) and (9.8) 
under the conditions (9.10). To reach these, it is convenient to replace ~, r7 by  
co, r where 

dco 1 d r  
d~ f (~)  d• e x p ( ~ ( r ~ ) -  ~(rl)} (9.12) 

and then (9.11), (9.8) become, respectively, 

O:coco - -  (C~ + 1 ) a c o  2 + 1 = 0 ( 9 . 1 3 )  

~ r r  - [(a + 1)/a] ~ r  2 -- 1 = 0 (9.14) 

where c~ w = d o ( d c o ,  ~ r  = dqa/dr. The metric (9.1) is now 

d o  2 = e2( c~ + ¢)(dr  2 _ dco 2 _ d ~  2) 

= e 2(fl + ~ ) ( f  2d'/ '2 - d ~  2 - f 2d~22) (9.15) 

where f i s  an arbitrary function of  ~. 
Clearly, when a = - 1, the equations (9.13) and (9.14) yield 

e ~ + ~ = A e ( r  = - w 2)/2 A = const 



140 McVITTIE AND WILTSHIRE 

with suitable definitions of the origins of co and r. On the other hand, if 
a + 1 :~ 0, the functions ot and ~ are interlocking hyperbolic or trigonometric 
functions of co and r, respectively. 

Since, by (9.6) and (9.4), 

K, = 2acew2 (dw]  z, dw dr 
\d~ ] K3 = -o~o~ ~- d--7~ d--~ 

it follows that neither K 1 nor K 3 can vanish identically. Therefore, aI1 cases 
considered in this section are noncomoving. 
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